Component 5: Assessing European Nitrogen and GHG fluxes, including scenarios

Wim de Vries

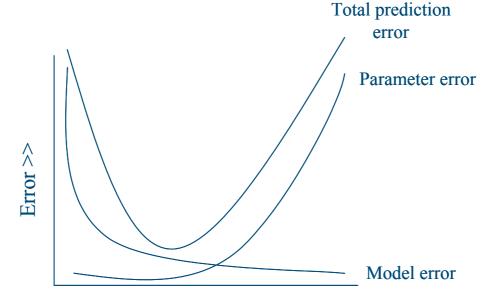
Activity leaders: Adrian Leip, Martha Bakker, Hans Kros, Pete Smith and Michael Obersteiner

Contents

- Objectives and approach
- Activities in the European integration component
 - Activity 1 Derivation of Harmonized GIS-based data sets
 - Activity 2 Derivation of "scenarios"
 - Activity 3 Development of multi-component model
 - Activity 4 Application of detailed ecosystem models
 - Activity 5 Application of multi component model
- Conclusions: previous experience/challenges

Objectives

- Develop and apply GIS-based integrated agro-ecological assessment tools! for the European scale to:
 - Assess present nitrogen (NH₃, NO_x) and greenhouse gas (GHG: CO₂, N₂O, CH₄) emissions and sinks and their interactions from terrestrial systems.
 - Assess interactions between C and N and between agricultural and non-agricultural systems.
 - Predict past and future N and GHG emissions/sinks in response to various scenarios on changes in: (i) land use and land management changes and (ii) climate and N deposition in response to different policies and strategies.



Modeling approach: scaling issues

Trade-off between model complexity and data availability in large scale environmental applications.

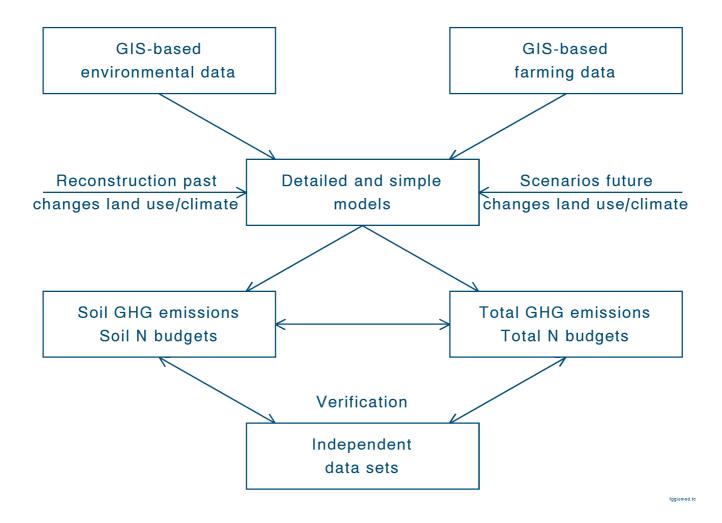
Choose level of complexity that minimizes total prediction

error

Model complexity >>

Modelling approach in NEU

- Use simple multi-sector and multi-component model to:
 - improve estimates of total N and GHG budgets and understanding of their overall interactions at a European scale.
 - Analyze environmental impacts of various scenarios/ policies (retrospective analysis and future prospects) on total emissions of N and GHG: Fast evaluation of a large number of alternative scenarios.


Modelling approach in NEU

- Use detailed ecosystem models to:
 - Analyze environmental impacts of various scenarios (retrospective analysis and future prospects) to improve the understanding of land use and climate change on N and GHG soil emissions at a European scale
 - Compare results of GHG soil emissions with those from the multi-sector model to gain insight in differences in model outcome by using different model approaches (part of the uncertainty assessment).

Organization of component 5 European integration

A 5.1 Derivation of harmonized GIS-based datasets

Activity 5.1 Harmonized GIS-based data

- Assess, analyze and collect GIS—based spatially explicit data for EU-25+5 (pan-European for land use) on:
 - environmental data (e.g. climate, soil, land cover/use, relief).
 - farming systems and farming management (e.g. rate and timing of manure application/fertilization, crop rotations etc).
- Develop a suitable data base for model application by:
 - Developing/standardizing disaggregation procedures to match modelling tools with respect to scale and content of data.
 - Constructing a data base infrastructure allowing a smooth data update to feed flexibly all modules.

Structure of C5 from the view of A 5.1

Environmental data

Soil database

Climate - MARS

Elevation (DEM)

Land cover (Corine)

Land use (LUCAS)

Agricultural Data

Crop phenology - MARS

Farm Structure Survey

FADN

FAO

ELPEN / CAPRI ...

Other Data

GIS-Europe

output

metadata

validation

EUROGRID

- 1km x 1 km grid
- Vector-maps

disaggregation

assessment

Soil texture / Soil organic carbon / pH /precipitation / temperature / N-deposition / Crop phenology / Fertilizer rates / Fertilizer types / Manure input / Tillage systems / Irrigation / ...

Ecosystem models

DNDC

CENTURY

MAGEC/SUNDIAL BASFOR-EFM

PASIM

Multicomponent Model INTEGRATOR

Soil modules

Farm modules

Scenarios ...

Task 5.1.1 Assessment of environmental data at EU 25+ 5 level

Task 5.1.1: Analysis of environmental data

- Definition and set-up of a consistent and comprehensive database structure incl. meta-data
- Set-up of data bases with relevant environmental information (soil, climate, land cover, ...)
- Disaggregation of agricultural data and forestry statistics / land cover data into calculation units used by the models (combination of soil, elevation, land use etc or an INSPIRE compliant grid).

synergies with Carbo-Europe IP

build upon CAPRI-D.S. INSEA ELPEN

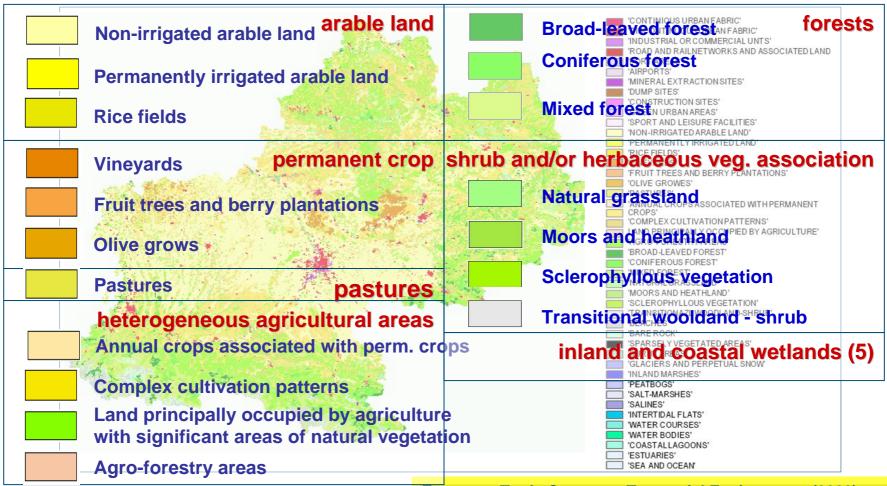
Datasets at EU-level (EUROGRID)

Environmental data

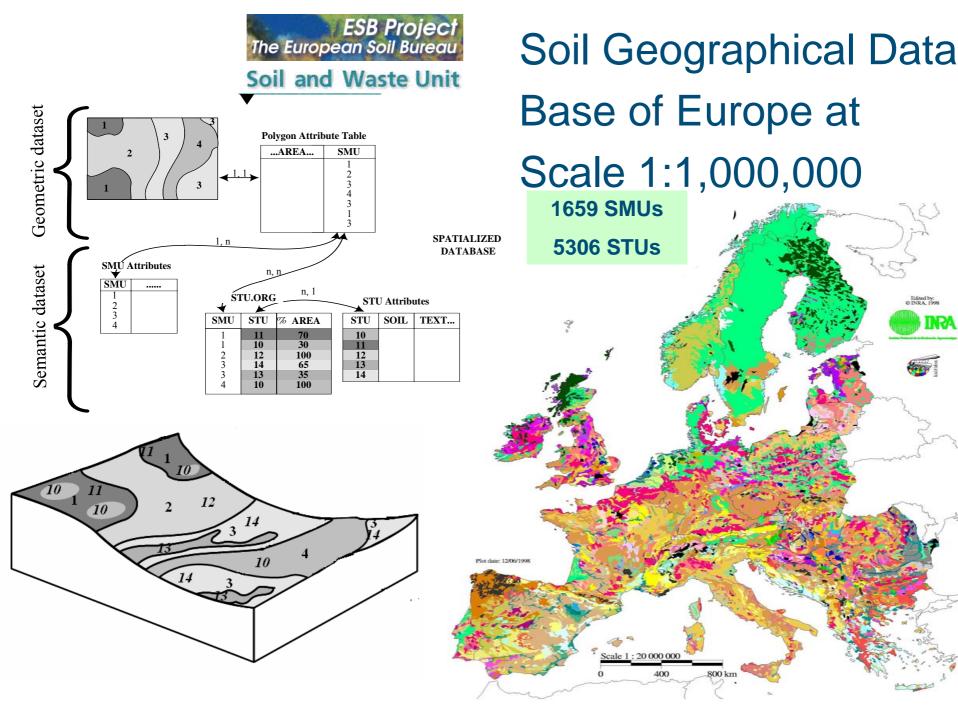
- Land Cover (Corine)
- Land use biased to agricultural crops (LUCAS)
- Soil (ESDB v2; WISE)
- Climate data (MARS, EMEP) =
- Elevation (GTOPO30)

Agricultural data

- Farm Structure Survey
- Farm Accountancy Data Network (FADN)
- CoCo Database (CAPRI)
- etc....



Corine Landcover classes


44 land cover classes

High spatial resolution (100 by 100m)

Low detail of agricultural (11) and Forests & semi-natural land use classes (12)

European Topic Centre on Terrestrial Environment (2000) Corine land cover database (Version 12/2000). Series

MARS-STAT Data Base:

daily meteorological interpolated data

- -50x50 km GRIDs
- -meteo interpolated data from 1975

-EU member states, the central European eastern countries, the new Independent states and the Mediterranean countries.

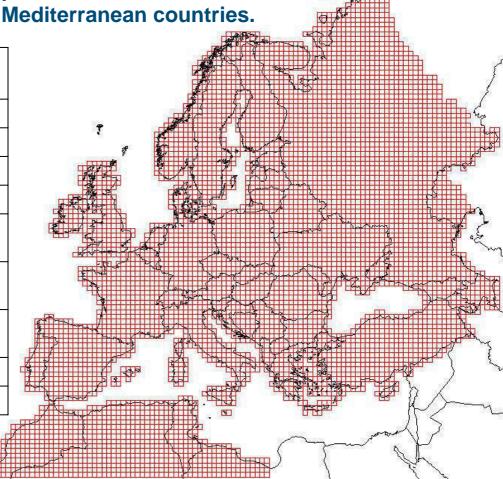
maximum temperature (°C)

minimum temperature (°C)

mean daily vapour pressure (hPa)

mean daily windspeed at 10m (m/s)

mean daily rainfall (mm)


Penman potential evaporation from a free water surface (mm/day)

Penman potential evaporation from a moist bare soil surface (mm/day)

Penman potential transpiration from a crop canopy (mm/day)

daily global radiation in KJ/m²/day

snow depth (cm) *

CAPRI-DynaSpat

Disaggregation of agricultural statistics

Motivation: provide models with adequate input data.

Methodology:

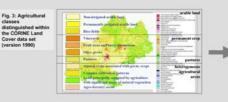
- a) calibration of the Corine Land Cover map with LUCAS data (GIS)
- b) estimate crop shares from environmental data (econometry)
- c) consistent disaggregation of land use choices

Timing: ... first product should be ready in April 2004 ...

Spatial disaggregation of Land Cover and Cropping information

Renate Koeble < renate.koeble@jrc.it >, Adrian Leip < adrian.leip@jrc.it > Joint Research Centre

Markus Kempen < kempen@agp.uni-bonn.de > Universitaet Bonn


INTRODUCTION

Biogeochemical models are powerful tools to derive environmental indicators such as greenhouse gas (GHG) emissions from agricultural soils as they are spatially explicit taking into consideration regional differences and can be used for scenario analyses. The accuracy of the model results, however, depends largely on the quality and the scale of the input data (Mulligan, 2004). Spatial Disaggregation of administrative agricultural statistics can help to reduce uncertainty by narrowing the range of sensitive input data for model simulations such as soil characteristics, and is therefore a prerequisite for successfully linking an economic (CAPRI) with a biogeochemical model (DNDC) to calculate GHG emissions from agricultural soils. This is foreseen within the project CAPRI DraSpat

METHODOLOGY 1: ESTIMATION OF CROP SHARES WITH THE CORING LAND COVER MAP AND THE LAND USE / COVER AREA FRAME STATISTICAL SURVEY (GIS)

- · Spatial intersection of the CORINE land cover, the Biogeographical egions and the Country area with the LUCAS points
- →Matrix giving the percentage of each LUCAS land cover class within each individual CORINE land cover class for different Biogeographical Regions
- →Restrictions: no agricultural land (LUCAS) in forests and urban land (CLC) and vice versa. Co location errors are removed with a buffer around CLC polygons

of the LUCAS data by biogeographica differences in and cultural

points were assessed by a field survey in 2001/2002 on a 18 km x 18 km grid with 10 each grid corner. Out of a total of 57 land cover classes 34 classes are

LUCAS CLASSES

Fig. 4: Matrix between **CORINE Land Cover** classes and the LUCAS Survey agricultural classes

relevant for agricultural activities

METHODOLOGY 2: ESTIMATION FO CROP SHARES ON THE BASIS OF GEOGRAPHICAL INFORMATION (ECONOMETRICS)

A "location model" is developed to relate crop shares to natural conditions. The data basis for geographical analysis of cropping patterns are: Soil type (sand content, clay content, organic carbon content), Climate data (length of vegetation period, sum of temperature in vegetation period, precipitation), Topographic information (elevation, slope) and land cover (CLC).

Cover data set

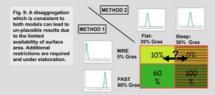

(version 1990)

Fig. 7: European Soil Mag olution: 1 by 1 km. texture and carbon conte

lution 50 by 50 km grid.

METHODOLOGY 3: CONSISTENT DISAGGREGATION

The most probable cropping pattern is searched which is consistent to the agricultural statistics on NUTS2 level and satisfies both models using econometric optimization procedures ("cross entropy").

PRELIMINARY RESULTS AND OUTLOOK

To assess the accuracy of the current, still preliminary disaggregation results in a 1 by 1km raster (Fig. 10b) are compared with a independent data set of agricultural statistics- the Farm Structure Survey (FSS) available in higher resolution (Fig. 10c) than the statistical data used within the optimization procedure (Fig. 10a). The comparisons (Fig. 11) show a good accordance of the distribution pattern of NUTS3 statistics and the outcome of the disaggregation procedure.

Currently further tests to improve the econometrical part of the procedure are done. For the LUCAS SURVEY/CORINE Land Cover analysis a major improvement is expected including the new CORINE 2000 data set as mapping accuracy has been improved and the temporal fit of the data will then be

Fig. 10: Maps showing the grassland distribution for the Rhone-Alpe Restatistical data (a and c) and the disaggregation results (b)

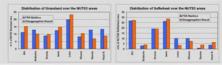


Fig. 11: Comparison of FSS NUTS3 statistics and the disaggregation results for the Rhone-Alpe

SELECTED REFERENCES

Task 5.1.2 Collection and analysis of agricultural data at EU 25+ 5 level

Data needed – simple models

- Animal numbers and excretion rates.
- Amount of fertiliser applied and type of fertilizer.
- Amount of manure applied and type of manure (e.g. slurry, solid).
- Manure management (e.g. housing/storage types, field application methods).
- Start/stop dates for grazing.
- Crop rotation(s).

Data needed - complex models

As for simple models, plus:

- Ploughing, sowing, harvesting dates.
- Timing of fertiliser applications.
- Timing of manure applications.
- Irrigation and its timing..etc

Actions needed

- Harmonisation of collected farming data (agricultural statistics, cropping calendars, ...) and assessment of data quality.
- Reconstruction of agricultural data to the past.
- Definition of rules/routines for deriving management and cropping information.
- Disaggregation procedures to assess model input at the level of model calculation units.
- Confront top down approach with bottom up approach based on synthesized expert knowledge (questionnaires).
- Validation of disaggregated maps in selected countries.

Harmonisation of collected statistical data

Statistical data: sources

- Regional EU-databank REGIO
- Farm Structure Survey (FSS/ Eurofarm)
- Farm Accountancy Data Network (FADN)

Different regional divisions between data sources Information level of data sources varies between countries

Regional divisions of EU-15

REGIO			FSS		FADN	HARM	
NUTS1	NUTS2	NUTS3	Region	Sub- region		Region	Sub- region
77	206	1031	129	502	104	100	482

Assessment of data quality

- Estimates of sampling errors are relevant in view of uncertainty analyses.
- For example, most data published in the statistical tables of FSS are produced from sample surveys, varying between ca 3-40 % of the total population of agricultural holdings.
- A further error is introduced during the rounding treatment to guarantee confidentiality during the production of statistical tables from survey data.

Routines for management and cropping information

Example of a routine could be:

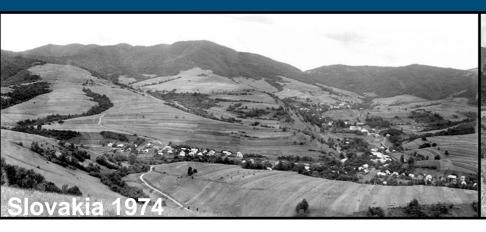
- Use temperature sum to estimate growing season start/end for arable crops and grass.
- Arable crops
 - Manure application at start and end of growing season.
 - Mineral fertiliser in first half of growing season.
- Grassland: mineral fertiliser and manure application throughout the growing season.

A5.2 – Deriving past, present and future land use scenario's

Activity 5.2 Derivation of "scenarios"

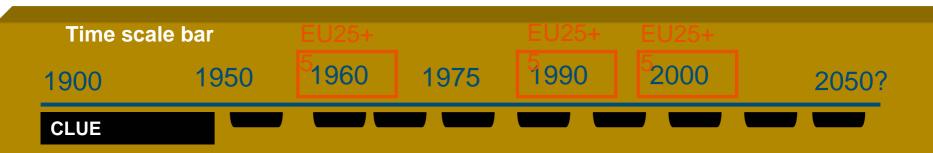
- Derivation of appropriate "scenario" types (historical reconstruction and future prospects) regarding land cover/land use, climate, N deposition for application by ecosystem models and multi-component model by
 - Inventory of past and current land use changes and land management.
 - Inventory of relevant EU and national policies to be used in deriving future scenarios (specifically on climate and N deposition)
 - Future scenarios on changes in land cover, land management, climate and N deposition

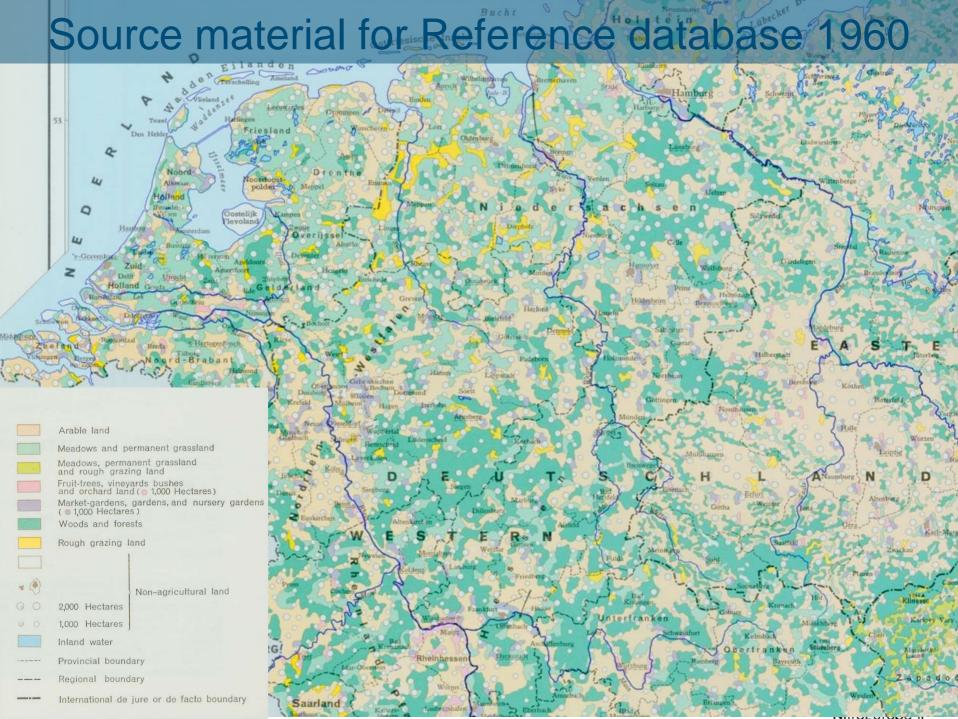
Activity 5.2 Derivation of "scenarios"


- Target period for the past: 1970 (1960) 2000: acceptable data quality in view of reconstruction land cover and land management.
- Target period for the future: 2000 2030 (2040)
 (possible exploratory outlook to 2100).
- Specific geographic areas (countries) included for validation on past changes.

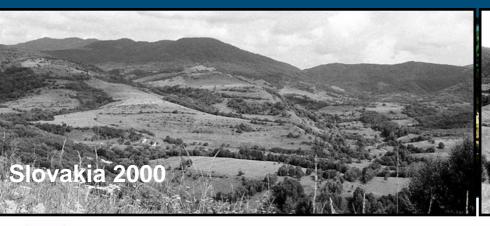
A5.2 – Deriving past, present and future changes

T 5.2.1 Historic land use reconstructions



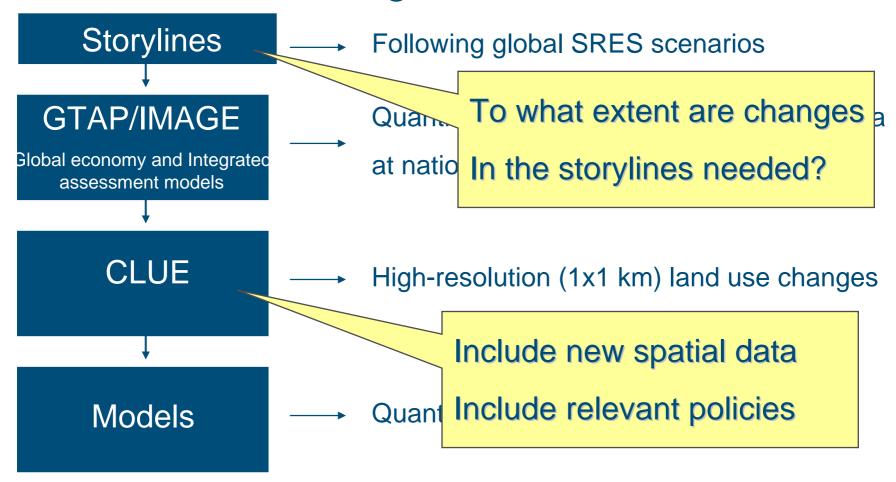


Historic land use reconstructions

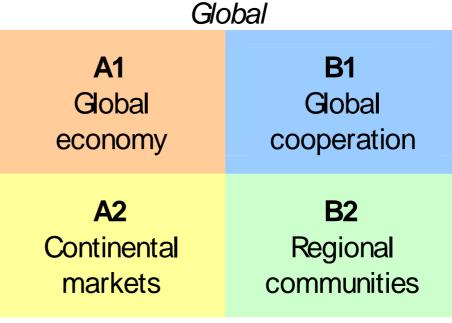

- Historic land cover (maps from 1960) will be scanned and processed.
- Actual land cover information for EU 25 + 3 is available from e.g. CORINE (CLC90, CLC2000), PELCOM. Information for Switzerland and Norway (yet missing) will be included.
- CLUE model will be used to reconstruct past land use changes (retrospective analysis) at a 1km scale level.
- Historic validation for parts of Europe based on RS information in the BIOPRESS & VISTA project. Detailed validation on topographic maps (HGN) for the Netherlands.
- Land use statistics (FAO & EUROSTAT) will be collected especially for 1960 and 1975.

A 5.2 – Deriving scenario's on past, present and future changes

T 5.2.2 + 5.2.3. Assessing impacts of future scenarios/policies on land use



NEU land use change models

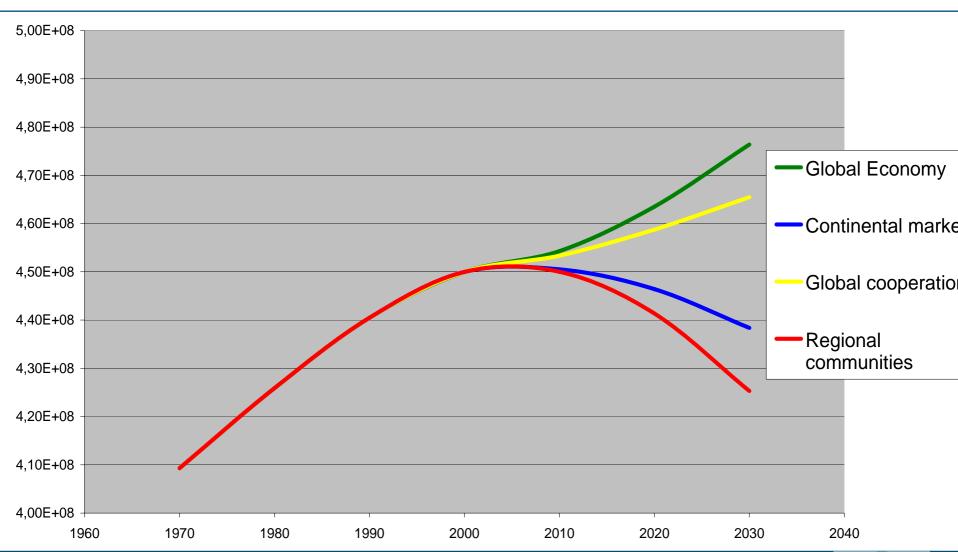


High regulation

Scenario approach

Model parameters are specified, based on assumed scenario conditions

Low regulation



Regional

Drivers Population EU-25

Urbanization

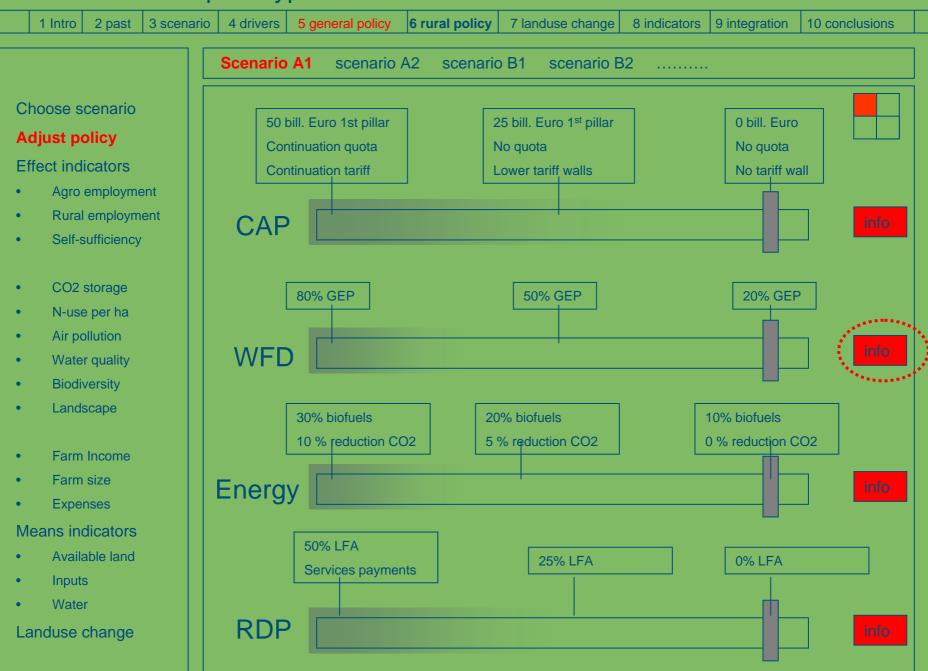
Residential Industrial Infrastructure Recreation

Land abandonment

Regrowth of natural vegetation

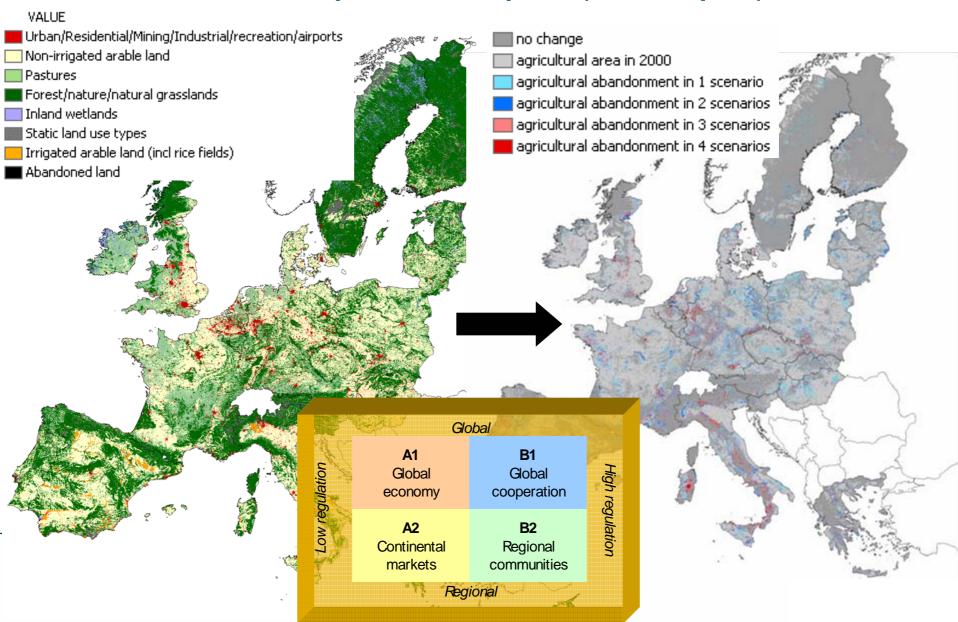
Degradation

Extensive land uses (hobby farming)


Major land use conversions

Percentage of total land area of the EU that faces urbanization, land abandonment or the development of new nature

	A1	A2	B1	B2
Urbanization	2.37	1.38	1.33	0.41
Land Abandonment	6.35	2.49	6.28	5.21
New nature	2.11	0.55	4.58	3 .18 /


EURURALIS 2.0 prototype

EURURALIS 2.0 prototype

7 landuse change 1 Intro 2 past 3 scenario 4 drivers 5 general policy 6 rural policy 8 indicators 9 integration 10 conclusions Scenario A1 scenario A2 scenario B2 scenario B1 Choose scenario Adjust policy Nitrogen use **Effect indicators** Agro employment Target. 170 kg / ha Rural employment Self-sufficiency CO₂ storage N-use per ha Water quality 210 **Biodiversity** Landscape **A1** Farm Income 170 **Target** Farm size A1 + policy Expenses Means indicators Available land Inputs Water Landuse change 2000 2010 2020 2030

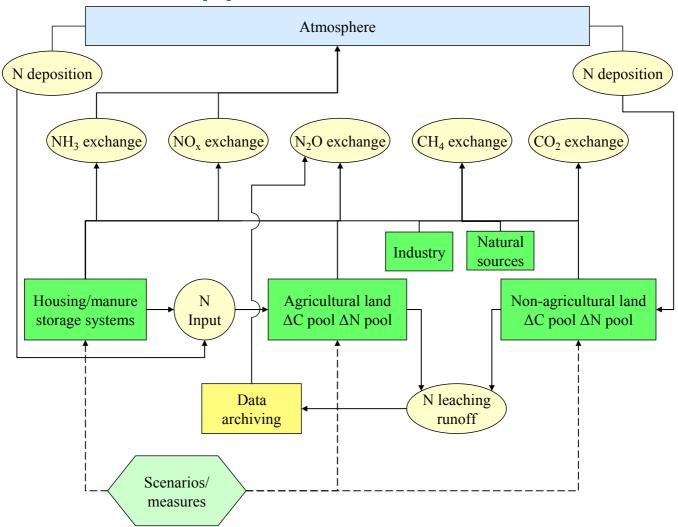
CLUE model input & output (Example)

Proposal Nitro Europe work scenarios

- Refine simulations of land use change for the period 2000-2030 based on updated SRES storylines, using the by EURURALIS approach:
- Refine land use classes and include nitrogen relevant spatial policies.
- Make extrapolations of land use change till 2080 based on ATEAM results for 2030-2080.

A5.3 – Development of a multisector model

Activity 5.3 Development of multi-component model


Objective

- Develop an integrated European multi-sector and multi-component model (INTEGRATOR) to:
 - assess combined effects of past, present and future land use change and policy scenarios on European N (NH₃, NO_x) and GHG fluxes (CH₄, N₂O and CO₂).
 - assess effects of policy options to reduce the combined effects of acidification and climate change.
 - support work for the IPCC Guidelines update.

Approach:modules

Modules in INTEGRATOR

Type of emissions	Updated IPCC approach	Empirical model	Process oriented model
Natural sources	CH ₄ , N ₂ O		
Industry	CH ₄ , N ₂ O, NH ₃ , NO _x	-	-
Animal	CH ₄ , N ₂ O, NH ₃ , NO _x	CH ₄ , N ₂ O	
husbandry			
Soils	CH ₄ , N2O	CH ₄ , N ₂ O ¹	CH ₄ ,N ₂ O, CO ₂
Surface waters	N_2O (CH ₄ , NO_x , CO ₂ ??)	N ₂ O??	N leaching

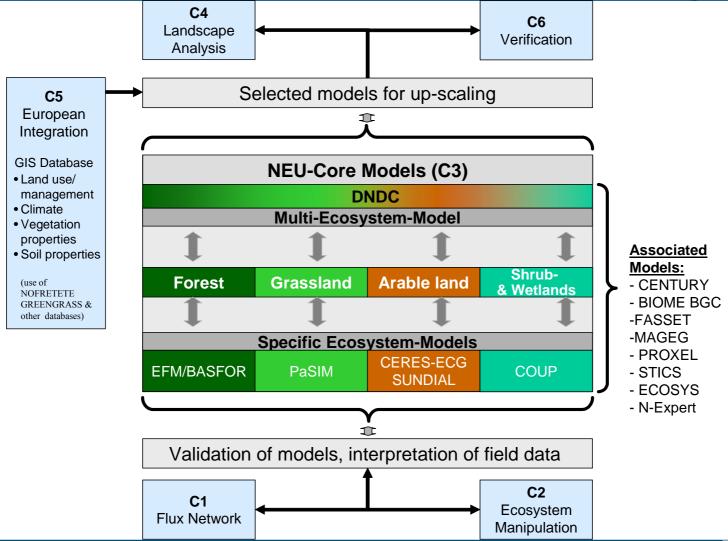
1 Applied for model validation on upscaled independent data

A5.4 and A5.5 – Application of detailed ecosystem models and multi-sector model

Activity 5.4 Application detailed ecosystem models

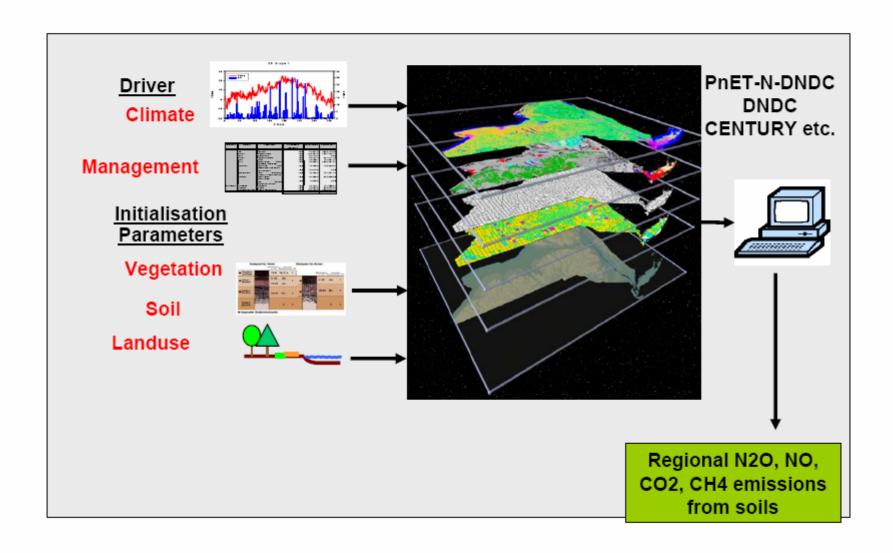
Link databases and scenarios to detailed ecosystem models to

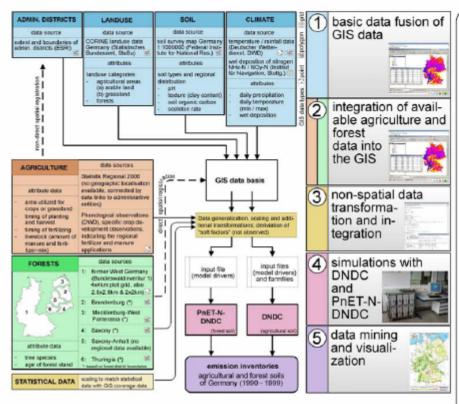
- show the scenario effects on soil emissions of N, GHG and C and N sequestration in soils and living biomass.
- provide an input for the top down estimate of European N₂O and CH₄ budgets

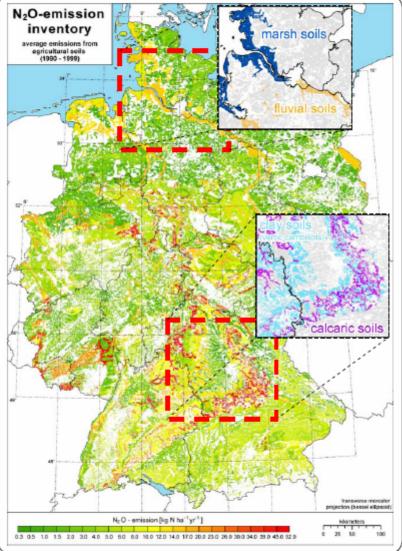

Activity 5.5 Application of multi component model

- Link databases and scenarios to the multicomponent assessment tool to:
 - show the scenario effects on total emissions of N, GHG and C and N sequestration in soils and living biomass.
 - provide an input for the update of the IPCC Guidelines.

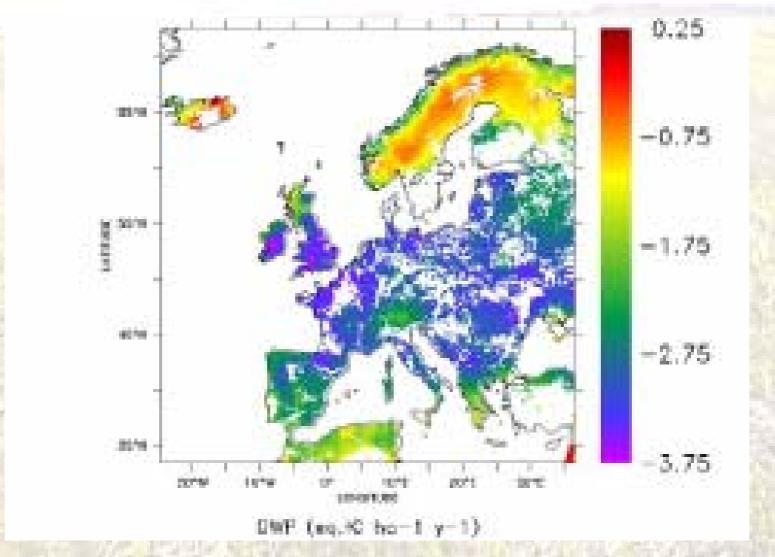
Role process-based models in European integration


Selected detailed models for European integration


- Multi-ecosystem models:
 - DNDC
 - CENTURY
- Sectoral models
 - MAGEC/SUNDIAL/RothC
 - BASFOR-EFM
 - PaSim ??



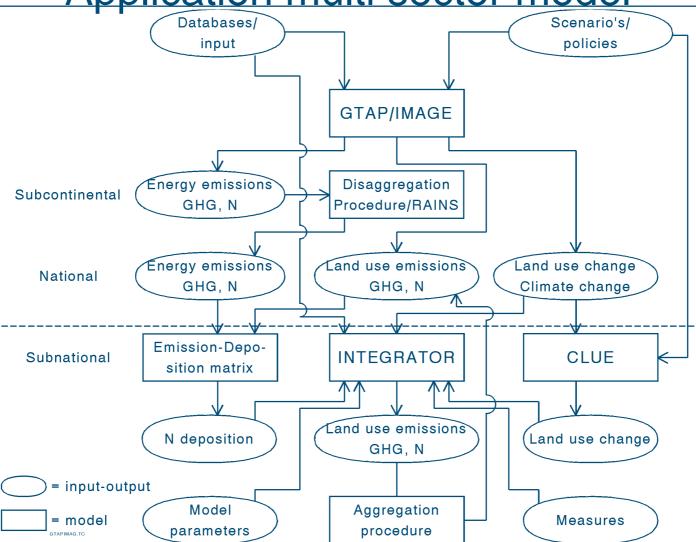
How all the models work



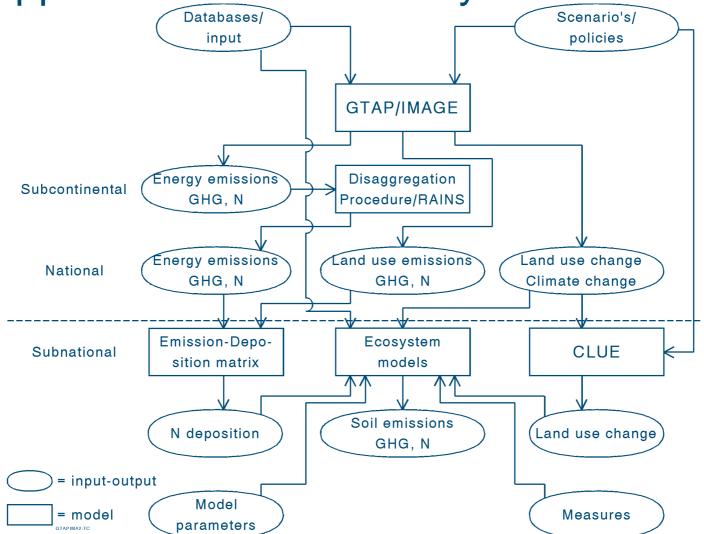
Multi-sectoral models: DNDC

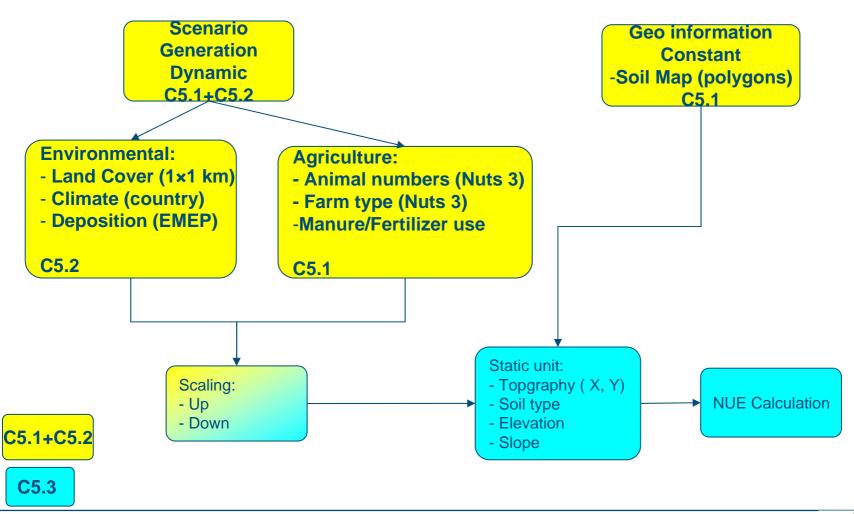
Sectoral models - Grassland: PaSim

Total GHG balance (expressed as t C-eq. ha⁻¹ y⁻¹)


Approach to activity 5.4 and 5.5

- Use land-use and land-management reconstructions and future LUC projections to examine the impact of present and previous land-use on N and GHG emissions for Europe
- Run models for Europe for defined calculation units (combination of soil, elevation, land use etc).
 Examine impact of land-use and land-management.
 Quantify uncertainty due to
 - a) Uncertainty in land-use/management reconstruction,
 - b) Uncertainty in model parameters and variables (response to land-use and management).
- Examine potential mitigation scenarios.


Application multi sector model


Application detailed ecosystem models

Application methodology

Conclusions

© Wageningen UR

Previous work/Challenges

- In deriving harmonized GIS-based data sets, use will be made of experience in previous projects (ELPEN, CAPRI, GREENGRASS).
- NEU will put emphasis on high quality data assessment, using e.g. logic rules for deriving management information, disaggregation procedures, validation on detailed data and assigning data uncertainty.
- For the reconstruction of past changes and scenarios of future changes in land use/land management, climate and N deposition, use will be made of available model systems (IMAGE, CLUE) and ongoing projects (Eururalis).
- NEU will put emphasis on validation on detailed country data and on implications of including N relevant policies.

Previous work/Challenges

- In deriving a multi-sector European-scale model predicting total emissions of N and GHG use will be made of available model systems.
- NEU will integrate data derived in flux measurements and manipulation experiments in deriving modules for soil emissions, include interactions between emission from agricultural and non agricultural areas and validate results on independent upscaled empirical data
- In deriving emissions of N and GHG in Europe, use will be made of detailed ecosystem models that have already been applied at that scale
- NEU will estimate N and GHG emission in past, present and future in response to scenarios accounting for uncertainties, including comparing detailed models with a multi-sector model.

Parallel sessions

Tuesday 14 900-1200

 Room D. Development of harmonized datasets for European modeling (Chair: Adrian Leip) (A5.1, A6.1)

Wednesday 15 1000-1130

Room F. European scale modeling of N and GHG fluxes (A5.3-5.5) (Chair: Wim de Vries)

Thursday 16 1045-1300

Room C. European scale modeling: focus on scenarios (A5.2) with a link to modeling (A5.3-A5.5) (Chair: Wim de Vries, Martha Bakker)

